

0960-894X(94)00182-0

IMIDAZOLINONES AS NONPEPTIDE ANGIOTENSIN II RECEPTOR ANTAGONISTS

Mimi L. Quan*, Inda DeLucca, George A. Boswell, Andrew T. Chiu, Pancras C. Wong, Ruth R. Wexler, and Pieter B.M.W.M. Timmermans

The DuPont Merck Pharmaceutical Company, Experimental Station, P.O. Box 80402, Wilmington, DE 19880-0402

Abstract: A series of biphenyl imidazolinones were synthesized as nonpeptide angiotensin II receptor antagonists. While those compounds with a tetrazole functionality were found to be AT_1 selective, those with a sulfonamide moiety showed affinities for both the AT_1 and the AT_2 sites. Representative compounds were very active in lowering blood pressure in conscious renal hypertensive rats following intravenous administration.

The renin-angiotensin system (RAS) plays an important role in blood pressure regulation. Angiotensin II (Ang II) is the biologically active component of the RAS responsible for the peripheral effects of this system. The potential role for Ang II receptor antagonists in the treatment of hypertension has been well documented and exemplified by Cozaar® (losartan, DuP 753). The discovery of Cozaar® has led to fruitful research activity in the pharmaceutical industry in the Ang II area. There is evidence that there are at least two Ang II receptor subtypes designated as AT₁ and AT₂. Losartan is selective for the AT₁ site which mediates most of the known Ang II physiologic functions. The functions of the AT₂ site are unclear at this time, however AT₂ receptor mediated effects of Ang II have been proposed.⁴

Recently Bernhart et al.⁵ reported some imidazolinones with selective affinity for the AT_1 receptor site. We have also synthesized a series of biphenyl imidazolinones. Those compounds with a tetrazole moiety as the acidic functionality showed selective affinity for the AT_1 site as observed by Bernhart.⁵ In addition, we have prepared some imidazolinones with affinities for both the AT_1 and AT_2 receptors.

The binding affinities and antihypertensive effects of these biphenyl tetrazolyl imidazolinones are shown in Table 1. Alkyl is preferred over aryl for R¹, R² and R³. A 14-fold increase in affinity was observed when R¹ was changed from phenyl to methyl (Ex.1 and Ex.2); a 75-fold increase in affinity was obtained when R² and R³ were both changed from phenyl to methyl (Ex.3 and Ex.5). The spiro-compounds (Ex.6-11) showed nanomolar binding affinity. Most of these compounds were very active in lowering blood pressure in conscious renal hypertensive rats following intravenous administration as indicated in Table 1.⁷ All of these compounds have an IC₅₀ greater than 10,000 nM for the AT₂ site.

Acyl sulfonamides were described by the Merck group⁸ as a replacement for the tetrazole moiety, and for this acid functionality it was found that the AT₂ affinity was enhanced in comparison to the tetrazole analogs. Several acyl sulfonamides were synthesized in this series and are reported in Table 2. While the AT₁ affinity remained in the nanomolar range, the AT₂ affinity was indeed improved. Ex.12 and Ex.13 showed a 50-fold

Table 1. Binding Affinities and Antihypertensive Activities of Biphenyl Tetrazolyl Imidazolinones

Ex. No.	R1	R ² , R ³	IC ₅₀ (AT ₁ , nM) ^{a,b}	ED ₃₀ (mg/kg) i.v. ^c
1	phenyl	Ph, Ph	1400	not tested
2	methyl	Ph, Ph	100	not tested
3	n-propyl	Ph, Ph	300	not tested
4	n-propyl	CF ₃ , CF ₃	20	not tested
5	n-propyl	CH ₃ , CH ₃	4	0.36
6	n-propyl	-(CH ₂) ₂ -	3	0.54
7	n-propyl	-(CH ₂) ₄ -	0.9	0.32
8 d	<i>n</i> -butyl	-(CH ₂) ₄ -	0.9	0.16
9	n-propyl	-(CH ₂) ₅ -	3	0.25
10	<i>n</i> -propyl	-(CH ₂) ₂ -S-(CH ₂) ₂ -	2	0.26
11	n-propyl	-(CH ₂) ₂ -O-(CH ₂) ₂ -	8	0.20

a. Inhibitory concentration of potential Ang II antagonists which gave 50% displacement of the total specifically bound [125 I] Ang II 6

increase in AT₂ affinity over the corresponding tetrazoles (Ex.5 and Ex.10). A 100-fold increase in AT₂ affinity was observed for Ex.15 relative to Ex.8. These compounds also produced a significant antihypertensive effect in renal hypertensive rats when administrated intravenously as shown in Table 2.

The sulfonamides were prepared by a similar method to that described by Naylor et al.⁸ as outlined in Scheme I. Benzenesulfonyl chloride 16 was reacted with *t*-butyl amine to give N-*t*-butylbenzensulfonamide. The benzenesufonamide was lithiated followed by reaction with trimethyl borate and hydrolysis to yield boronic acid 17. Palladium-catalyzed coupling of boronic acid 17 with *p*-bromotoluene gave biphenyl 18. Reaction of 18 with NBS/AIBN yielded benzyl bromide 19. Alkylation of imidazolinone 20^{5a} with 19 produced biphenyl imidazolinone 21. After the *t*-butyl protecting group was removed, the primary sulfonamide was coupled with

b. IC50 's for the AT2 receptor are greater than 10,000 nM for all these compounds.

c. Effective dose to lower blood pressure by 30 mm Hg in renal hypertensive rats (RHR) 7 .

d. Reported by Bernhart, see reference 5.

benzoic acid to give the sulfonamide 12.

In conclusion, we have synthesized a series of imidazolinones as nonpeptide angiotensin Π receptor antagonists. When the tetrazole moiety was used as the acid isostere, the imidazolinones were selective for the AT_1 site; when the acyl sulfonamide was used, the AT_2 affinities were significantly enhanced. Both the tetrazoles and sulfonamides were very active in lowering blood pressure in renal hypertensive rats following intravenous administration.

Table 2. Binding Affinities and Antihypertensive Activities of Acyl Sulfonamides

Ex No.	R1	R ² R ³	IC ₅₀ (AT ₁ ;AT ₂ , nM) ^a	ED ₃₀ (mg/kg) i.v.b
12	n-propyl	CH ₃ , CH ₃	3; 200	0.17
13	n-propyl	-(CH ₂) ₂ S(CH ₂) ₂ -	1; 200	0.29
14	n-propyl	-(CH ₂) ₄ -	9; 300	0.14
15	n-butyl	-(CH ₂) ₄ -	1; 100	0.29

a. Inhibitory concentration of potential Ang II antagonists which gave 50% displacement of the total specifically bound[125 I] Ang II 3a , 6

b. Effective dose to lower blood pressure by 30 mmHg in renal hypertensive rats (RHR)7.

Scheme I

Acknowledgment.

We thank D. McCall and T. Nguyen for conducting the *in vitro* assays, and R. Bernard, E. Crain, R. Hallowell, C. Watson, and A. Zaspel for conducting the *in vivo* assays. We also thank David J. Carini for his helpful suggestions on the manuscript.

References and Notes

- (a). Wong, P.C.; Barnes, B.; Chiu, A.T., Christ, D.D.; Duncia, J.V.; Herblin, W.F.; Timmermans, P.B.M.W.M. Cardiovascular Drug Review, 1991, 9 (4),317.
 (b). Duncia, J.V.; Carini, D.J.; Chiu, A.T.; Johnson, A.L.; Price, W.A.; Wong, P.C.; Wexler, R.R.; Timmermans, P.B.M.W.M. Med. Res. Rev. 1992, 12, 149.
- 2. Buhlmayer, P. Angiotensin-II Antagonists: Patent Activity since the Discovery of DuP-753. Curr. Opin. Ther. Pat. 1992, 1693.
- (a). Chiu, A.T.; Herblin, W.F.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L.; Timmermans, P.B.M.W.M. Biochem.Biophys.Res.Commun. 1989, 165, 196.
 (b). Chiu, A.T.; .Herblin, W.F.; Wong, P.C.; Smith, R.D.; Timmermans, P.B.M.W.M. J. Hypertension, 1992, 5(6), 406.
- 4. (a). Janiak, P., Pillon, A.; Prost, J.; Valaine, J. Hypertension, 1992, 20, 737-745. (b) Viswanathan, M., Saavedra, J.W. Peptides, 1992, 13, 783-786. (c) Brilla, C.G., Circulation, 1992, 86, I.
- (a)Bernhart, C.A.; Perreaut, P.M.; Rerrari, B.P.; Muneaux, Y.A.; Assens, J.L.A.; Clément, J.; Haudricourt, F.; Muneaux, C.F.; Taillades, J.E.; Vignal, M.A.; Gougat, J.; Guiraudou, P.R.; Lacour, C.A.; Roccon, A.; Cazaubon, C.F.; Brelière, J.C.; Fur, G.L.; Nisato, D. J.Med. Chem. 1993, 36, 3371. (b). Ferrari, B.; Taillades, J.E.; Bernhart, C.A.; Gougat, J.; Guiraudou, P.R.; Cazaubon, C.F.; Roccon, A.; Nisato, D.; Fur, G.L. and Brelière, J.C. Bioorg. Med. Chem. Lett., 1994, 4, 45.
- 6. Chiu, A.T.; McCall, D.E.; Price, W.A.; Wong, P.C.; Carini, D.J.; Duncia, J.V.; Wexler, R.R.; Yoo, S.E.; Johnson, A.L.; Timmermans, P.B.M.W.M. J. Pharmacol. Exp. Ther., 1990,252, 711.
- 7. Wong, P.C.; Chiu, A.T.; Price, W.A.; Thoolen, M.C.; Carini, D.J.; Johnson, A.L.; Taber, R.I.; Timmermans, P.B.M.W.M. *J Pharmacol.Exp. Ther.*, **1988**, 247, 1.
- 8. Naylor, E.M.; Chakravarty, P.K.; Costello, C.A.; Chang, R.S.; Chen, T.B.; Faust, K.A.; Lotti, V.J.; Kivlighn, S.D.; Zingaro, G.J.; Siegl, P.K.S.; Wong, P.C.; Carini, D.J.; Wexler, R.R.; Patchett, A.A.; Greenlee, W.J. *Bioorg. Med. Chem. Lett.*, **1994**, *4*, 69.

(Received in USA 8 April 1994; accepted 10 May 1994)